Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Two-Stage U-Net for High-Fidelity Denoising of Historical Recordings (2202.08702v2)

Published 17 Feb 2022 in eess.AS and cs.SD

Abstract: Enhancing the sound quality of historical music recordings is a long-standing problem. This paper presents a novel denoising method based on a fully-convolutional deep neural network. A two-stage U-Net model architecture is designed to model and suppress the degradations with high fidelity. The method processes the time-frequency representation of audio, and is trained using realistic noisy data to jointly remove hiss, clicks, thumps, and other common additive disturbances from old analog discs. The proposed model outperforms previous methods in both objective and subjective metrics. The results of a formal blind listening test show that real gramophone recordings denoised with this method have significantly better quality than the baseline methods. This study shows the importance of realistic training data and the power of deep learning in audio restoration.

Citations (22)

Summary

We haven't generated a summary for this paper yet.