Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Semantically Proportional Patchmix for Few-Shot Learning (2202.08647v1)

Published 17 Feb 2022 in cs.CV

Abstract: Few-shot learning aims to classify unseen classes with only a limited number of labeled data. Recent works have demonstrated that training models with a simple transfer learning strategy can achieve competitive results in few-shot classification. Although excelling at distinguishing training data, these models are not well generalized to unseen data, probably due to insufficient feature representations on evaluation. To tackle this issue, we propose Semantically Proportional Patchmix (SePPMix), in which patches are cut and pasted among training images and the ground truth labels are mixed proportionally to the semantic information of the patches. In this way, we can improve the generalization ability of the model by regional dropout effect without introducing severe label noise. To learn more robust representations of data, we further take rotate transformation on the mixed images and predict rotations as a rule-based regularizer. Extensive experiments on prevalent few-shot benchmarks have shown the effectiveness of our proposed method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.