Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An overview of deep learning in medical imaging (2202.08546v1)

Published 17 Feb 2022 in eess.IV and cs.CV

Abstract: Machine learning (ML) has seen enormous consideration during the most recent decade. This success started in 2012 when an ML model accomplished a remarkable triumph in the ImageNet Classification, the world's most famous competition for computer vision. This model was a kind of convolutional neural system (CNN) called deep learning (DL). Since then, researchers have started to participate efficiently in DL's fastest developing area of research. These days, DL systems are cutting-edge ML systems spanning a broad range of disciplines, from human language processing to video analysis, and commonly used in the scholarly world and enterprise sector. Recent advances can bring tremendous improvement to the medical field. Improved and innovative methods for data processing, image analysis and can significantly improve the diagnostic technologies and medicinal services gradually. A quick review of current developments with relevant problems in the field of DL used for medical imaging has been provided. The primary purposes of the review are four: (i) provide a brief prolog to DL by discussing different DL models, (ii) review of the DL usage for medical image analysis (classification, detection, segmentation, and registration), (iii) review seven main application fields of DL in medical imaging, (iv) give an initial stage to those keen on adding to the research area about DL in clinical imaging by providing links of some useful informative assets, such as freely available DL codes, public datasets Table 7, and medical imaging competition sources Table 8 and end our survey by outlining distinct continuous difficulties, lessons learned and future of DL in the field of medical science.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube