Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information Theory with Kernel Methods (2202.08545v2)

Published 17 Feb 2022 in cs.IT, cs.LG, math.IT, math.OC, and stat.ML

Abstract: We consider the analysis of probability distributions through their associated covariance operators from reproducing kernel Hilbert spaces. We show that the von Neumann entropy and relative entropy of these operators are intimately related to the usual notions of Shannon entropy and relative entropy, and share many of their properties. They come together with efficient estimation algorithms from various oracles on the probability distributions. We also consider product spaces and show that for tensor product kernels, we can define notions of mutual information and joint entropies, which can then characterize independence perfectly, but only partially conditional independence. We finally show how these new notions of relative entropy lead to new upper-bounds on log partition functions, that can be used together with convex optimization within variational inference methods, providing a new family of probabilistic inference methods.

Citations (36)

Summary

We haven't generated a summary for this paper yet.