Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Real Time Motion Planning Using Constrained Iterative Linear Quadratic Regulator for On-Road Self-Driving (2202.08400v1)

Published 17 Feb 2022 in cs.RO and math.OC

Abstract: Collision avoidance is one of the most challenging tasks people need to consider for developing the self-driving technology. In this paper we propose a new spatiotemporal motion planning algorithm that efficiently solves a constrained nonlinear optimal control problem using the iterative linear quadratic regulator (iLQR), which takes into account the uncertain driving behaviors of the traffic vehicles and minimizes the collision risks between the self-driving vehicle (referred to as the "ego" vehicle) and the traffic vehicles such that the ego vehicle is able to maintain sufficiently large distances to all the surrounding vehicles for achieving the desired collision avoidance maneuver in traffic. To this end, we introduce the concept of the "collision polygon" for computing the minimum distances between the ego vehicle and the traffic vehicles, and provide two different solutions for designing the constraints of the motion planning problem by properly modeling the behaviors of the traffic vehicles in order to evaluate the collision risk. Finally, the iLQR motion planning algorithm is validated in multiple real-time tasks for collision avoidance using both a simulator and a level-3 autonomous driving test platform.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)