Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Graph Masked Autoencoders with Transformers (2202.08391v2)

Published 17 Feb 2022 in cs.LG and cs.IR

Abstract: Recently, transformers have shown promising performance in learning graph representations. However, there are still some challenges when applying transformers to real-world scenarios due to the fact that deep transformers are hard to train from scratch and the quadratic memory consumption w.r.t. the number of nodes. In this paper, we propose Graph Masked Autoencoders (GMAEs), a self-supervised transformer-based model for learning graph representations. To address the above two challenges, we adopt the masking mechanism and the asymmetric encoder-decoder design. Specifically, GMAE takes partially masked graphs as input, and reconstructs the features of the masked nodes. The encoder and decoder are asymmetric, where the encoder is a deep transformer and the decoder is a shallow transformer. The masking mechanism and the asymmetric design make GMAE a memory-efficient model compared with conventional transformers. We show that, when serving as a conventional self-supervised graph representation model, GMAE achieves state-of-the-art performance on both the graph classification task and the node classification task under common downstream evaluation protocols. We also show that, compared with training in an end-to-end manner from scratch, we can achieve comparable performance after pre-training and fine-tuning using GMAE while simplifying the training process.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.