Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Prospective Approach for Human-to-Human Interaction Recognition from Wi-Fi Channel Data using Attention Bidirectional Gated Recurrent Neural Network with GUI Application Implementation (2202.08146v4)

Published 16 Feb 2022 in cs.LG, cs.AI, eess.SP, and stat.ML

Abstract: Human Activity Recognition (HAR) research has gained significant momentum due to recent technological advancements, artificial intelligence algorithms, the need for smart cities, and socioeconomic transformation. However, existing computer vision and sensor-based HAR solutions have limitations such as privacy issues, memory and power consumption, and discomfort in wearing sensors for which researchers are observing a paradigm shift in HAR research. In response, WiFi-based HAR is gaining popularity due to the availability of more coarse-grained Channel State Information. However, existing WiFi-based HAR approaches are limited to classifying independent and non-concurrent human activities performed within equal time duration. Recent research commonly utilizes a Single Input Multiple Output communication link with a WiFi signal of 5 GHz channel frequency, using two WiFi routers or two Intel 5300 NICs as transmitter-receiver. Our study, on the other hand, utilizes a Multiple Input Multiple Output radio link between a WiFi router and an Intel 5300 NIC, with the time-series Wi-Fi channel state information based on 2.4 GHz channel frequency for mutual human-to-human concurrent interaction recognition. The proposed Self-Attention guided Bidirectional Gated Recurrent Neural Network (Attention-BiGRU) deep learning model can classify 13 mutual interactions with a maximum benchmark accuracy of 94% for a single subject-pair. This has been expanded for ten subject pairs, which secured a benchmark accuracy of 88% with improved classification around the interaction-transition region. An executable graphical user interface (GUI) software has also been developed in this study using the PyQt5 python module to classify, save, and display the overall mutual concurrent human interactions performed within a given time duration. ...

Citations (3)

Summary

We haven't generated a summary for this paper yet.