Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Graph Neural Network and Koopman Models for Learning Networked Dynamics: A Comparative Study on Power Grid Transients Prediction (2202.08065v1)

Published 16 Feb 2022 in eess.SY, cs.SY, and math.OC

Abstract: Continuous monitoring of the spatio-temporal dynamic behavior of critical infrastructure networks, such as the power systems, is a challenging but important task. In particular, accurate and timely prediction of the (electro-mechanical) transient dynamic trajectories of the power grid is necessary for early detection of any instability and prevention of catastrophic failures. Existing approaches for the prediction of dynamic trajectories either rely on the availability of accurate physical models of the system, use computationally expensive time-domain simulations, or are applicable only at local prediction problems (e.g., a single generator). In this paper, we report the application of two broad classes of data-driven learning models -- along with their algorithmic implementation and performance evaluation -- in predicting transient trajectories in power networks using only streaming measurements and the network topology as input. One class of models is based on the Koopman operator theory which allows for capturing the nonlinear dynamic behavior via an infinite-dimensional linear operator. The other class of models is based on the graph convolutional neural networks which are adept at capturing the inherent spatio-temporal correlations within the power network. Transient dynamic datasets for training and testing the models are synthesized by simulating a wide variety of load change events in the IEEE 68-bus system, categorized by the load change magnitudes, as well as by the degree of connectivity and the distance to nearest generator nodes. The results confirm that the proposed predictive models can successfully predict the post-disturbance transient evolution of the system with a high level of accuracy.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube