Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Code Search based on Context-aware Code Translation (2202.08029v1)

Published 16 Feb 2022 in cs.SE and cs.AI

Abstract: Code search is a widely used technique by developers during software development. It provides semantically similar implementations from a large code corpus to developers based on their queries. Existing techniques leverage deep learning models to construct embedding representations for code snippets and queries, respectively. Features such as abstract syntactic trees, control flow graphs, etc., are commonly employed for representing the semantics of code snippets. However, the same structure of these features does not necessarily denote the same semantics of code snippets, and vice versa. In addition, these techniques utilize multiple different word mapping functions that map query words/code tokens to embedding representations. This causes diverged embeddings of the same word/token in queries and code snippets. We propose a novel context-aware code translation technique that translates code snippets into natural language descriptions (called translations). The code translation is conducted on machine instructions, where the context information is collected by simulating the execution of instructions. We further design a shared word mapping function using one single vocabulary for generating embeddings for both translations and queries. We evaluate the effectiveness of our technique, called TranCS, on the CodeSearchNet corpus with 1,000 queries. Experimental results show that TranCS significantly outperforms state-of-the-art techniques by 49.31% to 66.50% in terms of MRR (mean reciprocal rank).

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.