Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Diagnosing Batch Normalization in Class Incremental Learning (2202.08025v1)

Published 16 Feb 2022 in cs.LG and cs.CV

Abstract: Extensive researches have applied deep neural networks (DNNs) in class incremental learning (Class-IL). As building blocks of DNNs, batch normalization (BN) standardizes intermediate feature maps and has been widely validated to improve training stability and convergence. However, we claim that the direct use of standard BN in Class-IL models is harmful to both the representation learning and the classifier training, thus exacerbating catastrophic forgetting. In this paper we investigate the influence of BN on Class-IL models by illustrating such BN dilemma. We further propose BN Tricks to address the issue by training a better feature extractor while eliminating classification bias. Without inviting extra hyperparameters, we apply BN Tricks to three baseline rehearsal-based methods, ER, DER++ and iCaRL. Through comprehensive experiments conducted on benchmark datasets of Seq-CIFAR-10, Seq-CIFAR-100 and Seq-Tiny-ImageNet, we show that BN Tricks can bring significant performance gains to all adopted baselines, revealing its potential generality along this line of research.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.