Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

IPD:An Incremental Prototype based DBSCAN for large-scale data with cluster representatives (2202.07870v2)

Published 16 Feb 2022 in cs.LG, cs.CV, and cs.DB

Abstract: DBSCAN is a fundamental density-based clustering technique that identifies any arbitrary shape of the clusters. However, it becomes infeasible while handling big data. On the other hand, centroid-based clustering is important for detecting patterns in a dataset since unprocessed data points can be labeled to their nearest centroid. However, it can not detect non-spherical clusters. For a large data, it is not feasible to store and compute labels of every samples. These can be done as and when the information is required. The purpose can be accomplished when clustering act as a tool to identify cluster representatives and query is served by assigning cluster labels of nearest representative. In this paper, we propose an Incremental Prototype-based DBSCAN (IPD) algorithm which is designed to identify arbitrary-shaped clusters for large-scale data. Additionally, it chooses a set of representatives for each cluster.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.