Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Knowledge Distillation with Deep Supervision (2202.07846v2)

Published 16 Feb 2022 in cs.LG and cs.CV

Abstract: Knowledge distillation aims to enhance the performance of a lightweight student model by exploiting the knowledge from a pre-trained cumbersome teacher model. However, in the traditional knowledge distillation, teacher predictions are only used to provide the supervisory signal for the last layer of the student model, which may result in those shallow student layers lacking accurate training guidance in the layer-by-layer back propagation and thus hinders effective knowledge transfer. To address this issue, we propose Deeply-Supervised Knowledge Distillation (DSKD), which fully utilizes class predictions and feature maps of the teacher model to supervise the training of shallow student layers. A loss-based weight allocation strategy is developed in DSKD to adaptively balance the learning process of each shallow layer, so as to further improve the student performance. Extensive experiments on CIFAR-100 and TinyImageNet with various teacher-student models show significantly performance, confirming the effectiveness of our proposed method. Code is available at: $\href{https://github.com/luoshiya/DSKD}{https://github.com/luoshiya/DSKD}$

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube