Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Between Stochastic and Adversarial Online Convex Optimization: Improved Regret Bounds via Smoothness (2202.07554v2)

Published 15 Feb 2022 in cs.LG, math.OC, and stat.ML

Abstract: Stochastic and adversarial data are two widely studied settings in online learning. But many optimization tasks are neither i.i.d. nor fully adversarial, which makes it of fundamental interest to get a better theoretical understanding of the world between these extremes. In this work we establish novel regret bounds for online convex optimization in a setting that interpolates between stochastic i.i.d. and fully adversarial losses. By exploiting smoothness of the expected losses, these bounds replace a dependence on the maximum gradient length by the variance of the gradients, which was previously known only for linear losses. In addition, they weaken the i.i.d. assumption by allowing, for example, adversarially poisoned rounds, which were previously considered in the expert and bandit setting. Our results extend this to the online convex optimization framework. In the fully i.i.d. case, our bounds match the rates one would expect from results in stochastic acceleration, and in the fully adversarial case they gracefully deteriorate to match the minimax regret. We further provide lower bounds showing that our regret upper bounds are tight for all intermediate regimes in terms of the stochastic variance and the adversarial variation of the loss gradients.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Sarah Sachs (8 papers)
  2. Tim van Erven (32 papers)
  3. Cristóbal Guzmán (34 papers)
  4. Hédi Hadiji (9 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.