Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Monolithic multigrid for implicit Runge-Kutta discretizations of incompressible fluid flow (2202.07381v2)

Published 15 Feb 2022 in math.NA and cs.NA

Abstract: Most research on preconditioners for time-dependent PDEs has focused on implicit multi-step or diagonally-implicit multi-stage temporal discretizations. In this paper, we consider monolithic multigrid preconditioners for fully-implicit multi-stage Runge-Kutta (RK) time integration methods. These temporal discretizations have very attractive accuracy and stability properties, but they couple the spatial degrees of freedom across multiple time levels, requiring the solution of very large linear systems. We extend the classical Vanka relaxation scheme to implicit RK discretizations of saddle point problems. We present numerical results for the incompressible Stokes, Navier-Stokes, and resistive magnetohydrodynamics equations, in two and three dimensions, confirming that these relaxation schemes lead to robust and scalable monolithic multigrid methods for a challenging range of incompressible fluid-flow models.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.