Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Don't stop the training: continuously-updating self-supervised algorithms best account for auditory responses in the cortex (2202.07290v1)

Published 15 Feb 2022 in q-bio.NC, cs.AI, and cs.LG

Abstract: Over the last decade, numerous studies have shown that deep neural networks exhibit sensory representations similar to those of the mammalian brain, in that their activations linearly map onto cortical responses to the same sensory inputs. However, it remains unknown whether these artificial networks also learn like the brain. To address this issue, we analyze the brain responses of two ferret auditory cortices recorded with functional UltraSound imaging (fUS), while the animals were presented with 320 10\,s sounds. We compare these brain responses to the activations of Wav2vec 2.0, a self-supervised neural network pretrained with 960\,h of speech, and input with the same 320 sounds. Critically, we evaluate Wav2vec 2.0 under two distinct modes: (i) "Pretrained", where the same model is used for all sounds, and (ii) "Continuous Update", where the weights of the pretrained model are modified with back-propagation after every sound, presented in the same order as the ferrets. Our results show that the Continuous-Update mode leads Wav2Vec 2.0 to generate activations that are more similar to the brain than a Pretrained Wav2Vec 2.0 or than other control models using different training modes. These results suggest that the trial-by-trial modifications of self-supervised algorithms induced by back-propagation aligns with the corresponding fluctuations of cortical responses to sounds. Our finding thus provides empirical evidence of a common learning mechanism between self-supervised models and the mammalian cortex during sound processing.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.