Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Case law retrieval: problems, methods, challenges and evaluations in the last 20 years (2202.07209v1)

Published 15 Feb 2022 in cs.IR and cs.AI

Abstract: Case law retrieval is the retrieval of judicial decisions relevant to a legal question. Case law retrieval comprises a significant amount of a lawyer's time, and is important to ensure accurate advice and reduce workload. We survey methods for case law retrieval from the past 20 years and outline the problems and challenges facing evaluation of case law retrieval systems going forward. Limited published work has focused on improving ranking in ad-hoc case law retrieval. But there has been significant work in other areas of case law retrieval, and legal information retrieval generally. This is likely due to legal search providers being unwilling to give up the secrets of their success to competitors. Most evaluations of case law retrieval have been undertaken on small collections and focus on related tasks such as question-answer systems or recommender systems. Work has not focused on Cranfield style evaluations and baselines of methods for case law retrieval on publicly available test collections are not present. This presents a major challenge going forward. But there are reasons to question the extent of this problem, at least in a commercial setting. Without test collections to baseline approaches it cannot be known whether methods are promising. Works by commercial legal search providers show the effectiveness of natural language systems as well as query expansion for case law retrieval. Machine learning is being applied to more and more legal search tasks, and undoubtedly this represents the future of case law retrieval.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.