Matching Tweets With Applicable Fact-Checks Across Languages (2202.07094v2)
Abstract: An important challenge for news fact-checking is the effective dissemination of existing fact-checks. This in turn brings the need for reliable methods to detect previously fact-checked claims. In this paper, we focus on automatically finding existing fact-checks for claims made in social media posts (tweets). We conduct both classification and retrieval experiments, in monolingual (English only), multilingual (Spanish, Portuguese), and cross-lingual (Hindi-English) settings using multilingual transformer models such as XLM-RoBERTa and multilingual embeddings such as LaBSE and SBERT. We present promising results for "match" classification (86% average accuracy) in four language pairs. We also find that a BM25 baseline outperforms or is on par with state-of-the-art multilingual embedding models for the retrieval task during our monolingual experiments. We highlight and discuss NLP challenges while addressing this problem in different languages, and we introduce a novel curated dataset of fact-checks and corresponding tweets for future research.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.