Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Strategy Discovery and Mixture in Lifelong Learning from Heterogeneous Demonstration (2202.07014v1)

Published 14 Feb 2022 in cs.LG

Abstract: Learning from Demonstration (LfD) approaches empower end-users to teach robots novel tasks via demonstrations of the desired behaviors, democratizing access to robotics. A key challenge in LfD research is that users tend to provide heterogeneous demonstrations for the same task due to various strategies and preferences. Therefore, it is essential to develop LfD algorithms that ensure \textit{flexibility} (the robot adapts to personalized strategies), \textit{efficiency} (the robot achieves sample-efficient adaptation), and \textit{scalability} (robot reuses a concise set of strategies to represent a large amount of behaviors). In this paper, we propose a novel algorithm, Dynamic Multi-Strategy Reward Distillation (DMSRD), which distills common knowledge between heterogeneous demonstrations, leverages learned strategies to construct mixture policies, and continues to improve by learning from all available data. Our personalized, federated, and lifelong LfD architecture surpasses benchmarks in two continuous control problems with an average 77\% improvement in policy returns and 42\% improvement in log likelihood, alongside stronger task reward correlation and more precise strategy rewards.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.