Papers
Topics
Authors
Recent
2000 character limit reached

Error-Erasure Decoding of Linearized Reed-Solomon Codes in the Sum-Rank Metric (2202.06758v2)

Published 14 Feb 2022 in cs.IT and math.IT

Abstract: Codes in the sum-rank metric have various applications in error control for multishot network coding, distributed storage and code-based cryptography. Linearized Reed-Solomon (LRS) codes contain Reed-Solomon and Gabidulin codes as subclasses and fulfill the Singleton-like bound in the sum-rank metric with equality. We propose the first known error-erasure decoder for LRS codes to unleash their full potential for multishot network coding. The presented syndrome-based Berlekamp-Massey-like error-erasure decoder can correct $t_F$ full errors, $t_R$ row erasures and $t_C$ column erasures up to $2t_F + t_R + t_C \leq n-k$ in the sum-rank metric requiring at most $\mathcal{O}(n2)$ operations in $\mathbb{F}_{qm}$, where $n$ is the code's length and $k$ its dimension. We show how the proposed decoder can be used to correct errors in the sum-subspace metric that occur in (noncoherent) multishot network coding.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.