Error-Erasure Decoding of Linearized Reed-Solomon Codes in the Sum-Rank Metric (2202.06758v2)
Abstract: Codes in the sum-rank metric have various applications in error control for multishot network coding, distributed storage and code-based cryptography. Linearized Reed-Solomon (LRS) codes contain Reed-Solomon and Gabidulin codes as subclasses and fulfill the Singleton-like bound in the sum-rank metric with equality. We propose the first known error-erasure decoder for LRS codes to unleash their full potential for multishot network coding. The presented syndrome-based Berlekamp-Massey-like error-erasure decoder can correct $t_F$ full errors, $t_R$ row erasures and $t_C$ column erasures up to $2t_F + t_R + t_C \leq n-k$ in the sum-rank metric requiring at most $\mathcal{O}(n2)$ operations in $\mathbb{F}_{qm}$, where $n$ is the code's length and $k$ its dimension. We show how the proposed decoder can be used to correct errors in the sum-subspace metric that occur in (noncoherent) multishot network coding.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.