Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Error-Erasure Decoding of Linearized Reed-Solomon Codes in the Sum-Rank Metric (2202.06758v2)

Published 14 Feb 2022 in cs.IT and math.IT

Abstract: Codes in the sum-rank metric have various applications in error control for multishot network coding, distributed storage and code-based cryptography. Linearized Reed-Solomon (LRS) codes contain Reed-Solomon and Gabidulin codes as subclasses and fulfill the Singleton-like bound in the sum-rank metric with equality. We propose the first known error-erasure decoder for LRS codes to unleash their full potential for multishot network coding. The presented syndrome-based Berlekamp-Massey-like error-erasure decoder can correct $t_F$ full errors, $t_R$ row erasures and $t_C$ column erasures up to $2t_F + t_R + t_C \leq n-k$ in the sum-rank metric requiring at most $\mathcal{O}(n2)$ operations in $\mathbb{F}_{qm}$, where $n$ is the code's length and $k$ its dimension. We show how the proposed decoder can be used to correct errors in the sum-subspace metric that occur in (noncoherent) multishot network coding.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.