Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

FLHub: a Federated Learning model sharing service (2202.06493v1)

Published 14 Feb 2022 in cs.LG and cs.AI

Abstract: As easy-to-use deep learning libraries such as Tensorflow and Pytorch are popular, it has become convenient to develop machine learning models. Due to privacy issues with centralized machine learning, recently, federated learning in the distributed computing framework is attracting attention. The central server does not collect sensitive and personal data from clients in federated learning, but it only aggregates the model parameters. Though federated learning helps protect privacy, it is difficult for machine learning developers to share the models that they could utilize for different-domain applications. In this paper, we propose a federated learning model sharing service named Federated Learning Hub (FLHub). Users can upload, download, and contribute the model developed by other developers similarly to GitHub. We demonstrate that a forked model can finish training faster than the existing model and that learning progressed more quickly for each federated round.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.