Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FLHub: a Federated Learning model sharing service (2202.06493v1)

Published 14 Feb 2022 in cs.LG and cs.AI

Abstract: As easy-to-use deep learning libraries such as Tensorflow and Pytorch are popular, it has become convenient to develop machine learning models. Due to privacy issues with centralized machine learning, recently, federated learning in the distributed computing framework is attracting attention. The central server does not collect sensitive and personal data from clients in federated learning, but it only aggregates the model parameters. Though federated learning helps protect privacy, it is difficult for machine learning developers to share the models that they could utilize for different-domain applications. In this paper, we propose a federated learning model sharing service named Federated Learning Hub (FLHub). Users can upload, download, and contribute the model developed by other developers similarly to GitHub. We demonstrate that a forked model can finish training faster than the existing model and that learning progressed more quickly for each federated round.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.