Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Visual Sound Localization in the Wild by Cross-Modal Interference Erasing (2202.06406v1)

Published 13 Feb 2022 in cs.CV, cs.SD, and eess.AS

Abstract: The task of audio-visual sound source localization has been well studied under constrained scenes, where the audio recordings are clean. However, in real-world scenarios, audios are usually contaminated by off-screen sound and background noise. They will interfere with the procedure of identifying desired sources and building visual-sound connections, making previous studies non-applicable. In this work, we propose the Interference Eraser (IEr) framework, which tackles the problem of audio-visual sound source localization in the wild. The key idea is to eliminate the interference by redefining and carving discriminative audio representations. Specifically, we observe that the previous practice of learning only a single audio representation is insufficient due to the additive nature of audio signals. We thus extend the audio representation with our Audio-Instance-Identifier module, which clearly distinguishes sounding instances when audio signals of different volumes are unevenly mixed. Then we erase the influence of the audible but off-screen sounds and the silent but visible objects by a Cross-modal Referrer module with cross-modality distillation. Quantitative and qualitative evaluations demonstrate that our proposed framework achieves superior results on sound localization tasks, especially under real-world scenarios. Code is available at https://github.com/alvinliu0/Visual-Sound-Localization-in-the-Wild.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube