Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MIONet: Learning multiple-input operators via tensor product (2202.06137v1)

Published 12 Feb 2022 in cs.LG and physics.comp-ph

Abstract: As an emerging paradigm in scientific machine learning, neural operators aim to learn operators, via neural networks, that map between infinite-dimensional function spaces. Several neural operators have been recently developed. However, all the existing neural operators are only designed to learn operators defined on a single Banach space, i.e., the input of the operator is a single function. Here, for the first time, we study the operator regression via neural networks for multiple-input operators defined on the product of Banach spaces. We first prove a universal approximation theorem of continuous multiple-input operators. We also provide detailed theoretical analysis including the approximation error, which provides a guidance of the design of the network architecture. Based on our theory and a low-rank approximation, we propose a novel neural operator, MIONet, to learn multiple-input operators. MIONet consists of several branch nets for encoding the input functions and a trunk net for encoding the domain of the output function. We demonstrate that MIONet can learn solution operators involving systems governed by ordinary and partial differential equations. In our computational examples, we also show that we can endow MIONet with prior knowledge of the underlying system, such as linearity and periodicity, to further improve the accuracy.

Citations (135)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.