Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Online Bayesian Recommendation with No Regret (2202.06135v1)

Published 12 Feb 2022 in cs.GT, cs.IR, and cs.LG

Abstract: We introduce and study the online Bayesian recommendation problem for a platform, who can observe a utility-relevant state of a product, repeatedly interacting with a population of myopic users through an online recommendation mechanism. This paradigm is common in a wide range of scenarios in the current Internet economy. For each user with her own private preference and belief, the platform commits to a recommendation strategy to utilize his information advantage on the product state to persuade the self-interested user to follow the recommendation. The platform does not know user's preferences and beliefs, and has to use an adaptive recommendation strategy to persuade with gradually learning user's preferences and beliefs in the process. We aim to design online learning policies with no Stackelberg regret for the platform, i.e., against the optimum policy in hindsight under the assumption that users will correspondingly adapt their behaviors to the benchmark policy. Our first result is an online policy that achieves double logarithm regret dependence on the number of rounds. We then present a hardness result showing that no adaptive online policy can achieve regret with better dependency on the number of rounds. Finally, by formulating the platform's problem as optimizing a linear program with membership oracle access, we present our second online policy that achieves regret with polynomial dependence on the number of states but logarithm dependence on the number of rounds.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.