Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Semantic-Oriented Unlabeled Priming for Large-Scale Language Models (2202.06133v1)

Published 12 Feb 2022 in cs.CL

Abstract: Due to the high costs associated with finetuning LLMs, various recent works propose to adapt them to specific tasks without any parameter updates through in-context learning. Unfortunately, for in-context learning there is currently no way to leverage unlabeled data, which is often much easier to obtain in large quantities than labeled examples. In this work, we therefore investigate ways to make use of unlabeled examples to improve the zero-shot performance of pretrained LLMs without any finetuning: We introduce Semantic-Oriented Unlabeled Priming (SOUP), a method that classifies examples by retrieving semantically similar unlabeled examples, assigning labels to them in a zero-shot fashion, and then using them for in-context learning. We also propose bag-of-contexts priming, a new priming strategy that is more suitable for our setting and enables the usage of more examples than fit into the context window.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.