Cloud-based computational model predictive control using a parallel multi-block ADMM approach (2202.06012v2)
Abstract: Heavy computational load for solving nonconvex problems for large-scale systems or systems with real-time demands at each sample step has been recognized as one of the reasons for preventing a wider application of nonlinear model predictive control (NMPC). To improve the real-time feasibility of NMPC with input nonlinearity, we devise an innovative scheme called cloud-based computational model predictive control (MPC) by using an elaborately designed parallel multi-block alternating direction method of multipliers (ADMM) algorithm. This novel parallel multi-block ADMM algorithm is tailored to tackle the computational issue of solving a nonconvex problem with nonlinear constraints.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.