Papers
Topics
Authors
Recent
2000 character limit reached

Boosting Barely Robust Learners: A New Perspective on Adversarial Robustness (2202.05920v1)

Published 11 Feb 2022 in cs.LG and stat.ML

Abstract: We present an oracle-efficient algorithm for boosting the adversarial robustness of barely robust learners. Barely robust learning algorithms learn predictors that are adversarially robust only on a small fraction $\beta \ll 1$ of the data distribution. Our proposed notion of barely robust learning requires robustness with respect to a "larger" perturbation set; which we show is necessary for strongly robust learning, and that weaker relaxations are not sufficient for strongly robust learning. Our results reveal a qualitative and quantitative equivalence between two seemingly unrelated problems: strongly robust learning and barely robust learning.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.