2000 character limit reached
Boosting Barely Robust Learners: A New Perspective on Adversarial Robustness (2202.05920v1)
Published 11 Feb 2022 in cs.LG and stat.ML
Abstract: We present an oracle-efficient algorithm for boosting the adversarial robustness of barely robust learners. Barely robust learning algorithms learn predictors that are adversarially robust only on a small fraction $\beta \ll 1$ of the data distribution. Our proposed notion of barely robust learning requires robustness with respect to a "larger" perturbation set; which we show is necessary for strongly robust learning, and that weaker relaxations are not sufficient for strongly robust learning. Our results reveal a qualitative and quantitative equivalence between two seemingly unrelated problems: strongly robust learning and barely robust learning.