Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast and Robust Sparsity Learning over Networks: A Decentralized Surrogate Median Regression Approach (2202.05498v1)

Published 11 Feb 2022 in stat.ML, cs.LG, and stat.ME

Abstract: Decentralized sparsity learning has attracted a significant amount of attention recently due to its rapidly growing applications. To obtain the robust and sparse estimators, a natural idea is to adopt the non-smooth median loss combined with a $\ell_1$ sparsity regularizer. However, most of the existing methods suffer from slow convergence performance caused by the {\em double} non-smooth objective. To accelerate the computation, in this paper, we proposed a decentralized surrogate median regression (deSMR) method for efficiently solving the decentralized sparsity learning problem. We show that our proposed algorithm enjoys a linear convergence rate with a simple implementation. We also investigate the statistical guarantee, and it shows that our proposed estimator achieves a near-oracle convergence rate without any restriction on the number of network nodes. Moreover, we establish the theoretical results for sparse support recovery. Thorough numerical experiments and real data study are provided to demonstrate the effectiveness of our method.

Citations (5)

Summary

We haven't generated a summary for this paper yet.