Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Privacy-preserving Generative Framework Against Membership Inference Attacks (2202.05469v1)

Published 11 Feb 2022 in cs.CR and cs.AI

Abstract: Artificial intelligence and machine learning have been integrated into all aspects of our lives and the privacy of personal data has attracted more and more attention. Since the generation of the model needs to extract the effective information of the training data, the model has the risk of leaking the privacy of the training data. Membership inference attacks can measure the model leakage of source data to a certain degree. In this paper, we design a privacy-preserving generative framework against membership inference attacks, through the information extraction and data generation capabilities of the generative model variational autoencoder (VAE) to generate synthetic data that meets the needs of differential privacy. Instead of adding noise to the model output or tampering with the training process of the target model, we directly process the original data. We first map the source data to the latent space through the VAE model to get the latent code, then perform noise process satisfying metric privacy on the latent code, and finally use the VAE model to reconstruct the synthetic data. Our experimental evaluation demonstrates that the machine learning model trained with newly generated synthetic data can effectively resist membership inference attacks and still maintain high utility.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.