Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

PARSE: Pairwise Alignment of Representations in Semi-Supervised EEG Learning for Emotion Recognition (2202.05400v2)

Published 11 Feb 2022 in cs.LG

Abstract: We propose PARSE, a novel semi-supervised architecture for learning strong EEG representations for emotion recognition. To reduce the potential distribution mismatch between the large amounts of unlabeled data and the limited amount of labeled data, PARSE uses pairwise representation alignment. First, our model performs data augmentation followed by label guessing for large amounts of original and augmented unlabeled data. This is then followed by sharpening of the guessed labels and convex combinations of the unlabeled and labeled data. Finally, representation alignment and emotion classification are performed. To rigorously test our model, we compare PARSE to several state-of-the-art semi-supervised approaches which we implement and adapt for EEG learning. We perform these experiments on four public EEG-based emotion recognition datasets, SEED, SEED-IV, SEED-V and AMIGOS (valence and arousal). The experiments show that our proposed framework achieves the overall best results with varying amounts of limited labeled samples in SEED, SEED-IV and AMIGOS (valence), while approaching the overall best result (reaching the second-best) in SEED-V and AMIGOS (arousal). The analysis shows that our pairwise representation alignment considerably improves the performance by reducing the distribution alignment between unlabeled and labeled data, especially when only 1 sample per class is labeled.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.