Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Disentangling Information Paths with Coded ResNeXt (2202.05343v2)

Published 10 Feb 2022 in cs.CV, cs.IT, cs.LG, and math.IT

Abstract: The conventional, widely used treatment of deep learning models as black boxes provides limited or no insights into the mechanisms that guide neural network decisions. Significant research effort has been dedicated to building interpretable models to address this issue. Most efforts either focus on the high-level features associated with the last layers, or attempt to interpret the output of a single layer. In this paper, we take a novel approach to enhance the transparency of the function of the whole network. We propose a neural network architecture for classification, in which the information that is relevant to each class flows through specific paths. These paths are designed in advance before training leveraging coding theory and without depending on the semantic similarities between classes. A key property is that each path can be used as an autonomous single-purpose model. This enables us to obtain, without any additional training and for any class, a lightweight binary classifier that has at least $60\%$ fewer parameters than the original network. Furthermore, our coding theory based approach allows the neural network to make early predictions at intermediate layers during inference, without requiring its full evaluation. Remarkably, the proposed architecture provides all the aforementioned properties while improving the overall accuracy. We demonstrate these properties on a slightly modified ResNeXt model tested on CIFAR-10/100 and ImageNet-1k.

Citations (1)

Summary

We haven't generated a summary for this paper yet.