Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Dynamic Background Subtraction by Generative Neural Networks (2202.05336v1)

Published 10 Feb 2022 in eess.IV, cs.CV, and cs.LG

Abstract: Background subtraction is a significant task in computer vision and an essential step for many real world applications. One of the challenges for background subtraction methods is dynamic background, which constitute stochastic movements in some parts of the background. In this paper, we have proposed a new background subtraction method, called DBSGen, which uses two generative neural networks, one for dynamic motion removal and another for background generation. At the end, the foreground moving objects are obtained by a pixel-wise distance threshold based on a dynamic entropy map. The proposed method has a unified framework that can be optimized in an end-to-end and unsupervised fashion. The performance of the method is evaluated over dynamic background sequences and it outperforms most of state-of-the-art methods. Our code is publicly available at https://github.com/FatemeBahri/DBSGen.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.