Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dimensional criterion for forecasting nonlinear systems by reservoir computing (2202.05159v3)

Published 9 Feb 2022 in cs.LG and nlin.CD

Abstract: Reservoir computers (RC) have proven useful as surrogate models in forecasting and replicating systems of chaotic dynamics. The quality of surrogate models based on RCs is crucially dependent on their optimal implementation that involves selecting optimal reservoir topology and hyperparameters. By systematically applying Bayesian hyperparameter optimization and using ensembles of reservoirs of various topology we show that connectednes of reservoirs is of significance only in forecasting and replication of chaotic system of sufficient complexity. By applying RCs of different topology in forecasting and replicating the Lorenz system, a coupled Wilson-Cowan system, and the Kuramoto-Sivashinsky system, we show that simple reservoirs of unconnected nodes (RUN) outperform reservoirs of connected nodes for target systems whose estimated fractal dimension dimension is $d \lesssim 5.5$ and that linked reservoirs are better for systems with $d > 5.5$. This finding is highly important for evaluation of reservoir computing methods and on selecting a method for prediction of signals measured on nonlinear systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Pauliina Kärkkäinen (1 paper)
  2. Riku Linna (2 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.