Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

OWL (Observe, Watch, Listen): Audiovisual Temporal Context for Localizing Actions in Egocentric Videos (2202.04947v3)

Published 10 Feb 2022 in cs.CV, cs.SD, and eess.AS

Abstract: Egocentric videos capture sequences of human activities from a first-person perspective and can provide rich multimodal signals. However, most current localization methods use third-person videos and only incorporate visual information. In this work, we take a deep look into the effectiveness of audiovisual context in detecting actions in egocentric videos and introduce a simple-yet-effective approach via Observing, Watching, and Listening (OWL). OWL leverages audiovisual information and context for egocentric temporal action localization (TAL). We validate our approach in two large-scale datasets, EPIC-Kitchens, and HOMAGE. Extensive experiments demonstrate the relevance of the audiovisual temporal context. Namely, we boost the localization performance (mAP) over visual-only models by +2.23% and +3.35% in the above datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.