Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SAFER: Data-Efficient and Safe Reinforcement Learning via Skill Acquisition (2202.04849v2)

Published 10 Feb 2022 in cs.LG

Abstract: Methods that extract policy primitives from offline demonstrations using deep generative models have shown promise at accelerating reinforcement learning(RL) for new tasks. Intuitively, these methods should also help to trainsafeRLagents because they enforce useful skills. However, we identify these techniques are not well equipped for safe policy learning because they ignore negative experiences(e.g., unsafe or unsuccessful), focusing only on positive experiences, which harms their ability to generalize to new tasks safely. Rather, we model the latentsafetycontextusing principled contrastive training on an offline dataset of demonstrations from many tasks, including both negative and positive experiences. Using this late variable, our RL framework, SAFEty skill pRiors (SAFER) extracts task-specific safe primitive skills to safely and successfully generalize to new tasks. In the inference stage, policies trained with SAFER learn to compose safe skills into successful policies. We theoretically characterize why SAFER can enforce safe policy learning and demonstrate its effectiveness on several complex safety-critical robotic grasping tasks inspired by the game Operation, in which SAFERoutperforms state-of-the-art primitive learning methods in success and safety.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Dylan Slack (17 papers)
  2. Yinlam Chow (46 papers)
  3. Bo Dai (245 papers)
  4. Nevan Wichers (11 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.