Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Counting Kernels in Directed Graphs with Arbitrary Orientations (2202.04476v3)

Published 9 Feb 2022 in cs.DM and math.CO

Abstract: A kernel of a directed graph is a subset of vertices that is both independent and absorbing (every vertex not in the kernel has an out-neighbour in the kernel). Not all directed graphs contain kernels, and computing a kernel or deciding that none exist is NP-complete even on low-degree planar digraphs. The existing polynomial-time algorithms for this problem all restrict both the undirected structure and the edge orientations of the input: for example, to chordal graphs without bidirectional edges (Pass-Lanneau, Igarashi and Meunier, Discrete Appl Math 2020) or to permutation graphs where each clique has a sink (Abbas and Saoula, 4OR 2005). By contrast, we count the kernels of a fuzzy circular interval graph in polynomial time, regardless of its edge orientations, and return a kernel when one exists. (Fuzzy circular graphs were introduced by Chudnovsky and Seymour in their structure theorem for claw-free graphs.) We also consider kernels on cographs, where we establish NP-hardness in general but linear running times on the subclass of threshold graphs.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)