Papers
Topics
Authors
Recent
2000 character limit reached

Vertical Federated Learning: Challenges, Methodologies and Experiments (2202.04309v2)

Published 9 Feb 2022 in cs.LG and cs.DC

Abstract: Recently, federated learning (FL) has emerged as a promising distributed ML technology, owing to the advancing computational and sensing capacities of end-user devices, however with the increasing concerns on users' privacy. As a special architecture in FL, vertical FL (VFL) is capable of constructing a hyper ML model by embracing sub-models from different clients. These sub-models are trained locally by vertically partitioned data with distinct attributes. Therefore, the design of VFL is fundamentally different from that of conventional FL, raising new and unique research issues. In this paper, we aim to discuss key challenges in VFL with effective solutions, and conduct experiments on real-life datasets to shed light on these issues. Specifically, we first propose a general framework on VFL, and highlight the key differences between VFL and conventional FL. Then, we discuss research challenges rooted in VFL systems under four aspects, i.e., security and privacy risks, expensive computation and communication costs, possible structural damage caused by model splitting, and system heterogeneity. Afterwards, we develop solutions to addressing the aforementioned challenges, and conduct extensive experiments to showcase the effectiveness of our proposed solutions.

Citations (79)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.