Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Log-based Anomaly Detection with Deep Learning: How Far Are We? (2202.04301v2)

Published 9 Feb 2022 in cs.SE and cs.LG

Abstract: Software-intensive systems produce logs for troubleshooting purposes. Recently, many deep learning models have been proposed to automatically detect system anomalies based on log data. These models typically claim very high detection accuracy. For example, most models report an F-measure greater than 0.9 on the commonly-used HDFS dataset. To achieve a profound understanding of how far we are from solving the problem of log-based anomaly detection, in this paper, we conduct an in-depth analysis of five state-of-the-art deep learning-based models for detecting system anomalies on four public log datasets. Our experiments focus on several aspects of model evaluation, including training data selection, data grouping, class distribution, data noise, and early detection ability. Our results point out that all these aspects have significant impact on the evaluation, and that all the studied models do not always work well. The problem of log-based anomaly detection has not been solved yet. Based on our findings, we also suggest possible future work.

Citations (138)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.