Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Data-Driven Approach to Robust Hypothesis Testing Using Sinkhorn Uncertainty Sets (2202.04258v3)

Published 9 Feb 2022 in stat.ML and cs.LG

Abstract: Hypothesis testing for small-sample scenarios is a practically important problem. In this paper, we investigate the robust hypothesis testing problem in a data-driven manner, where we seek the worst-case detector over distributional uncertainty sets centered around the empirical distribution from samples using Sinkhorn distance. Compared with the Wasserstein robust test, the corresponding least favorable distributions are supported beyond the training samples, which provides a more flexible detector. Various numerical experiments are conducted on both synthetic and real datasets to validate the competitive performances of our proposed method.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.