Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

RECOVER: sequential model optimization platform for combination drug repurposing identifies novel synergistic compounds in vitro (2202.04202v3)

Published 7 Feb 2022 in q-bio.QM and cs.LG

Abstract: For large libraries of small molecules, exhaustive combinatorial chemical screens become infeasible to perform when considering a range of disease models, assay conditions, and dose ranges. Deep learning models have achieved state of the art results in silico for the prediction of synergy scores. However, databases of drug combinations are biased towards synergistic agents and these results do not necessarily generalise out of distribution. We employ a sequential model optimization search utilising a deep learning model to quickly discover synergistic drug combinations active against a cancer cell line, requiring substantially less screening than an exhaustive evaluation. Our small scale wet lab experiments only account for evaluation of ~5% of the total search space. After only 3 rounds of ML-guided in vitro experimentation (including a calibration round), we find that the set of drug pairs queried is enriched for highly synergistic combinations; two additional rounds of ML-guided experiments were performed to ensure reproducibility of trends. Remarkably, we rediscover drug combinations later confirmed to be under study within clinical trials. Moreover, we find that drug embeddings generated using only structural information begin to reflect mechanisms of action. Prior in silico benchmarking suggests we can enrich search queries by a factor of ~5-10x for highly synergistic drug combinations by using sequential rounds of evaluation when compared to random selection, or by a factor of >3x when using a pretrained model selecting all drug combinations at a single time point.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.