Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Self-supervised Contrastive Learning for Cross-domain Hyperspectral Image Representation (2202.03968v1)

Published 8 Feb 2022 in cs.CV

Abstract: Recently, self-supervised learning has attracted attention due to its remarkable ability to acquire meaningful representations for classification tasks without using semantic labels. This paper introduces a self-supervised learning framework suitable for hyperspectral images that are inherently challenging to annotate. The proposed framework architecture leverages cross-domain CNN, allowing for learning representations from different hyperspectral images with varying spectral characteristics and no pixel-level annotation. In the framework, cross-domain representations are learned via contrastive learning where neighboring spectral vectors in the same image are clustered together in a common representation space encompassing multiple hyperspectral images. In contrast, spectral vectors in different hyperspectral images are separated into distinct clusters in the space. To verify that the learned representation through contrastive learning is effectively transferred into a downstream task, we perform a classification task on hyperspectral images. The experimental results demonstrate the advantage of the proposed self-supervised representation over models trained from scratch or other transfer learning methods.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.