Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Efficient approximation of cardiac mechanics through reduced order modeling with deep learning-based operator approximation (2202.03904v1)

Published 8 Feb 2022 in math.NA and cs.NA

Abstract: Reducing the computational time required by high-fidelity, full order models (FOMs) for the solution of problems in cardiac mechanics is crucial to allow the translation of patient-specific simulations into clinical practice. While FOMs, such as those based on the finite element method, provide valuable information of the cardiac mechanical function, up to hundreds of thousands degrees of freedom may be needed to obtain accurate numerical results. As a matter of fact, simulating even just a few heartbeats can require hours to days of CPU time even on powerful supercomputers. In addition, cardiac models depend on a set of input parameters that we could let vary in order to explore multiple virtual scenarios. To compute reliable solutions at a greatly reduced computational cost, we rely on a reduced basis method empowered with a new deep-learning based operator approximation, which we refer to as Deep-HyROMnet technique. Our strategy combines a projection-based POD-Galerkin method with deep neural networks for the approximation of (reduced) nonlinear operators, overcoming the typical computational bottleneck associated with standard hyper-reduction techniques. This method is shown to provide reliable approximations to cardiac mechanics problems outperforming classical projection-based ROMs in terms of computational speed-up of orders of magnitude, and enhancing forward uncertainty quantification analysis otherwise unaffordable.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.