Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MixCycle: Unsupervised Speech Separation via Cyclic Mixture Permutation Invariant Training (2202.03875v2)

Published 8 Feb 2022 in eess.AS, cs.LG, cs.SD, and eess.SP

Abstract: We introduce two unsupervised source separation methods, which involve self-supervised training from single-channel two-source speech mixtures. Our first method, mixture permutation invariant training (MixPIT), enables learning a neural network model which separates the underlying sources via a challenging proxy task without supervision from the reference sources. Our second method, cyclic mixture permutation invariant training (MixCycle), uses MixPIT as a building block in a cyclic fashion for continuous learning. MixCycle gradually converts the problem from separating mixtures of mixtures into separating single mixtures. We compare our methods to common supervised and unsupervised baselines: permutation invariant training with dynamic mixing (PIT-DM) and mixture invariant training (MixIT). We show that MixCycle outperforms MixIT and reaches a performance level very close to the supervised baseline (PIT-DM) while circumventing the over-separation issue of MixIT. Also, we propose a self-evaluation technique inspired by MixCycle that estimates model performance without utilizing any reference sources. We show that it yields results consistent with an evaluation on reference sources (LibriMix) and also with an informal listening test conducted on a real-life mixtures dataset (REAL-M).

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com