Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

New results on vectorial dual-bent functions and partial difference sets (2202.03817v2)

Published 8 Feb 2022 in cs.IT and math.IT

Abstract: Bent functions $f: V_{n}\rightarrow \mathbb{F}{p}$ with certain additional properties play an important role in constructing partial difference sets, where $V{n}$ denotes an $n$-dimensional vector space over $\mathbb{F}{p}$, $p$ is an odd prime. In \cite{Cesmelioglu1,Cesmelioglu2}, the so-called vectorial dual-bent functions are considered to construct partial difference sets. In \cite{Cesmelioglu1}, \c{C}e\c{s}melio\v{g}lu \emph{et al.} showed that for vectorial dual-bent functions $F: V{n}\rightarrow V_{s}$ with certain additional properties, the preimage set of $0$ for $F$ forms a partial difference set. In \cite{Cesmelioglu2}, \c{C}e\c{s}melio\v{g}lu \emph{et al.} showed that for a class of Maiorana-McFarland vectorial dual-bent functions $F: V_{n}\rightarrow \mathbb{F}{ps}$, the preimage set of the squares (non-squares) in $\mathbb{F}{ps}{*}$ for $F$ forms a partial difference set. In this paper, we further study vectorial dual-bent functions and partial difference sets. We prove that for vectorial dual-bent functions $F: V_{n}\rightarrow \mathbb{F}{ps}$ with certain additional properties, the preimage set of the squares (non-squares) in $\mathbb{F}{ps}{*}$ for $F$ and the preimage set of any coset of some subgroup of $\mathbb{F}_{ps}{*}$ for $F$ form partial difference sets. Furthermore, explicit constructions of partial difference sets are yielded from some (non)-quadratic vectorial dual-bent functions. In this paper, we illustrate that almost all the results of using weakly regular $p$-ary bent functions to construct partial difference sets are special cases of our results.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)