Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep learning fluid flow reconstruction around arbitrary two-dimensional objects from sparse sensors using conformal mappings (2202.03798v2)

Published 8 Feb 2022 in physics.flu-dyn and cs.LG

Abstract: The usage of neural networks (NNs) for flow reconstruction (FR) tasks from a limited number of sensors is attracting strong research interest, owing to NNs' ability to replicate high dimensional relationships. Trained on a single flow case for a given Reynolds number or over a reduced range of Reynolds numbers, these models are unfortunately not able to handle flows around different objects without re-training. We propose a new framework called Spatial Multi-Geometry FR (SMGFR) task, capable of reconstructing fluid flows around different two-dimensional objects without re-training, mapping the computational domain as an annulus. Different NNs for different sensor setups (where information about the flow is collected) are trained with high-fidelity simulation data for a Reynolds number equal to approximately $300$ for 64 objects randomly generated using Bezier curves. The performance of the models and sensor setups are then assessed for the flow around 16 unseen objects. It is shown that our mapping approach improves percentage errors by up to 15\% in SMGFR when compared to a more conventional approach where the models are trained on a Cartesian grid, and achieves errors under 3\%, 10\% and 30\% for pressure, velocity and vorticity fields predictions, respectively. Finally, SMGFR is extended to predictions of snapshots in the future, introducing the Spatio-temporal MGFR (STMGFR) task. A novel approach is developed for STMGFR involving splitting DNNs into a spatial and a temporal component. We demonstrate that this approach is able to reproduce, in time and in space, the main features of flows around arbitrary objects.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube