Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

STC: Spatio-Temporal Contrastive Learning for Video Instance Segmentation (2202.03747v2)

Published 8 Feb 2022 in cs.CV

Abstract: Video Instance Segmentation (VIS) is a task that simultaneously requires classification, segmentation, and instance association in a video. Recent VIS approaches rely on sophisticated pipelines to achieve this goal, including RoI-related operations or 3D convolutions. In contrast, we present a simple and efficient single-stage VIS framework based on the instance segmentation method CondInst by adding an extra tracking head. To improve instance association accuracy, a novel bi-directional spatio-temporal contrastive learning strategy for tracking embedding across frames is proposed. Moreover, an instance-wise temporal consistency scheme is utilized to produce temporally coherent results. Experiments conducted on the YouTube-VIS-2019, YouTube-VIS-2021, and OVIS-2021 datasets validate the effectiveness and efficiency of the proposed method. We hope the proposed framework can serve as a simple and strong alternative for many other instance-level video association tasks.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.