Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Conflict-free incidence coloring of outer-1-planar graphs (2202.03738v2)

Published 8 Feb 2022 in math.CO and cs.DM

Abstract: An incidence of a graph $G$ is a vertex-edge pair $(v,e)$ such that $v$ is incidence with $e$. A conflict-free incidence coloring of a graph is a coloring of the incidences in such a way that two incidences $(u,e)$ and $(v,f)$ get distinct colors if and only if they conflict each other, i.e.,(i) $u=v$, (ii) $uv$ is $e$ or $f$, or (iii) there is a vertex $w$ such that $uw=e$ and $vw=f$. The minimum number of colors used among all conflict-free incidence colorings of a graph is the conflict-free incidence chromatic number. A graph is outer-1-planar if it can be drawn in the plane so that vertices are on the outer-boundary and each edge is crossed at most once. In this paper, we show that the conflict-free incidence chromatic number of an outer-1-planar graph with maximum degree $\Delta$ is either $2\Delta$ or $2\Delta+1$ unless the graph is a cycle on three vertices, and moreover, all outer-1-planar graphs with conflict-free incidence chromatic number $2\Delta$ or $2\Delta+1$ are completely characterized. An efficient algorithm for constructing an optimal conflict-free incidence coloring of a connected outer-1-planar graph is given.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)