Spectrum, algebraicity and normalization in alternate bases (2202.03718v1)
Abstract: The first aim of this article is to give information about the algebraic properties of alternate bases $\boldsymbol{\beta}=(\beta_0,\dots,\beta_{p-1})$ determining sofic systems. We show that a necessary condition is that the product $\delta=\prod_{i=0}{p-1}\beta_i$ is an algebraic integer and all of the bases $\beta_0,\ldots,\beta_{p-1}$ belong to the algebraic field ${\mathbb Q}(\delta)$. On the other hand, we also give a sufficient condition: if $\delta$ is a Pisot number and $\beta_0,\ldots,\beta_{p-1}\in {\mathbb Q}(\delta)$, then the system associated with the alternate base $\boldsymbol{\beta}=(\beta_0,\dots,\beta_{p-1})$ is sofic. The second aim of this paper is to provide an analogy of Frougny's result concerning normalization of real bases representations. We show that given an alternate base $\boldsymbol{\beta}=(\beta_0,\dots,\beta_{p-1})$ such that $\delta$ is a Pisot number and $\beta_0,\ldots,\beta_{p-1}\in {\mathbb Q}(\delta)$, the normalization function is computable by a finite B\"uchi automaton, and furthermore, we effectively construct such an automaton. An important tool in our study is the spectrum of numeration systems associated with alternate bases. The spectrum of a real number $\delta>1$ and an alphabet $A\subset {\mathbb Z}$ was introduced by Erd\H{o}s et al. For our purposes, we use a generalized concept with $\delta\in{\mathbb C}$ and $A\subset{\mathbb C}$ and study its topological properties.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.