Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Self-supervised Speaker Recognition Training Using Human-Machine Dialogues (2202.03484v2)

Published 7 Feb 2022 in cs.LG

Abstract: Speaker recognition, recognizing speaker identities based on voice alone, enables important downstream applications, such as personalization and authentication. Learning speaker representations, in the context of supervised learning, heavily depends on both clean and sufficient labeled data, which is always difficult to acquire. Noisy unlabeled data, on the other hand, also provides valuable information that can be exploited using self-supervised training methods. In this work, we investigate how to pretrain speaker recognition models by leveraging dialogues between customers and smart-speaker devices. However, the supervisory information in such dialogues is inherently noisy, as multiple speakers may speak to a device in the course of the same dialogue. To address this issue, we propose an effective rejection mechanism that selectively learns from dialogues based on their acoustic homogeneity. Both reconstruction-based and contrastive-learning-based self-supervised methods are compared. Experiments demonstrate that the proposed method provides significant performance improvements, superior to earlier work. Dialogue pretraining when combined with the rejection mechanism yields 27.10% equal error rate (EER) reduction in speaker recognition, compared to a model without self-supervised pretraining.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.