Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Crafting Better Contrastive Views for Siamese Representation Learning (2202.03278v3)

Published 7 Feb 2022 in cs.CV

Abstract: Recent self-supervised contrastive learning methods greatly benefit from the Siamese structure that aims at minimizing distances between positive pairs. For high performance Siamese representation learning, one of the keys is to design good contrastive pairs. Most previous works simply apply random sampling to make different crops of the same image, which overlooks the semantic information that may degrade the quality of views. In this work, we propose ContrastiveCrop, which could effectively generate better crops for Siamese representation learning. Firstly, a semantic-aware object localization strategy is proposed within the training process in a fully unsupervised manner. This guides us to generate contrastive views which could avoid most false positives (i.e., object vs. background). Moreover, we empirically find that views with similar appearances are trivial for the Siamese model training. Thus, a center-suppressed sampling is further designed to enlarge the variance of crops. Remarkably, our method takes a careful consideration of positive pairs for contrastive learning with negligible extra training overhead. As a plug-and-play and framework-agnostic module, ContrastiveCrop consistently improves SimCLR, MoCo, BYOL, SimSiam by 0.4% ~ 2.0% classification accuracy on CIFAR-10, CIFAR-100, Tiny ImageNet and STL-10. Superior results are also achieved on downstream detection and segmentation tasks when pre-trained on ImageNet-1K.

Citations (95)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.