Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Crafting Better Contrastive Views for Siamese Representation Learning (2202.03278v3)

Published 7 Feb 2022 in cs.CV

Abstract: Recent self-supervised contrastive learning methods greatly benefit from the Siamese structure that aims at minimizing distances between positive pairs. For high performance Siamese representation learning, one of the keys is to design good contrastive pairs. Most previous works simply apply random sampling to make different crops of the same image, which overlooks the semantic information that may degrade the quality of views. In this work, we propose ContrastiveCrop, which could effectively generate better crops for Siamese representation learning. Firstly, a semantic-aware object localization strategy is proposed within the training process in a fully unsupervised manner. This guides us to generate contrastive views which could avoid most false positives (i.e., object vs. background). Moreover, we empirically find that views with similar appearances are trivial for the Siamese model training. Thus, a center-suppressed sampling is further designed to enlarge the variance of crops. Remarkably, our method takes a careful consideration of positive pairs for contrastive learning with negligible extra training overhead. As a plug-and-play and framework-agnostic module, ContrastiveCrop consistently improves SimCLR, MoCo, BYOL, SimSiam by 0.4% ~ 2.0% classification accuracy on CIFAR-10, CIFAR-100, Tiny ImageNet and STL-10. Superior results are also achieved on downstream detection and segmentation tasks when pre-trained on ImageNet-1K.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xiangyu Peng (33 papers)
  2. Kai Wang (624 papers)
  3. Zheng Zhu (200 papers)
  4. Mang Wang (14 papers)
  5. Yang You (173 papers)
Citations (95)

Summary

We haven't generated a summary for this paper yet.