Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Almost Optimal Proper Learning and Testing Polynomials (2202.03207v1)

Published 7 Feb 2022 in cs.LG, cs.DS, and stat.ML

Abstract: We give the first almost optimal polynomial-time proper learning algorithm of Boolean sparse multivariate polynomial under the uniform distribution. For $s$-sparse polynomial over $n$ variables and $\epsilon=1/s\beta$, $\beta>1$, our algorithm makes $$q_U=\left(\frac{s}{\epsilon}\right){\frac{\log \beta}{\beta}+O(\frac{1}{\beta})}+ \tilde O\left(s\right)\left(\log\frac{1}{\epsilon}\right)\log n$$ queries. Notice that our query complexity is sublinear in $1/\epsilon$ and almost linear in $s$. All previous algorithms have query complexity at least quadratic in $s$ and linear in $1/\epsilon$. We then prove the almost tight lower bound $$q_L=\left(\frac{s}{\epsilon}\right){\frac{\log \beta}{\beta}+\Omega(\frac{1}{\beta})}+ \Omega\left(s\right)\left(\log\frac{1}{\epsilon}\right)\log n,$$ Applying the reduction in~\cite{Bshouty19b} with the above algorithm, we give the first almost optimal polynomial-time tester for $s$-sparse polynomial. Our tester, for $\beta>3.404$, makes $$\tilde O\left(\frac{s}{\epsilon}\right)$$ queries.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.